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Colorful configurations

C={G,...,Cq}
o UG — R = (C, p) is a colorful configuration
T C UG is colorful if it contains | T| colors

a simplex is colorful if it is spanned by ¢(T), T colorful
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p € RY arbitrary point ...wlog p =0

assume: 0 does not lie on a boundary of any colorful simplex
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Centered colorful configurations

p € RY arbitrary point ...wlog p =0

assume: 0 does not lie on a boundary of any colorful simplex
C is centered ...0 € conv p(C;)

colorful d-dim simplex S is hitting if 0 € conv S

Another hitting simplex
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C is a colorful centered configuration

colorful simplicial depth of C = cdepth(C)
= number of hitting simplices of C

Deza, Huang, Stephen and Terlaky '06

Placing all C; the same ~~ simplicial depth Liu 90

points with maximal simplicial depth
~ higher dim analogue of median

applications in statistics
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Known results

Theorem (Colorful Carathéodory, Barany '82)
There is always at least one hitting simplex. (cdepth > 1)

Conjecture (Deza, Huang, Stephen, Terlaky, '06)
IfCardCGp=Card GG =...=Card Cy =d + 1, then
@ cdepthC > d2+1
@ cdepthC < 1 + dd+1

Deza et al: both bounds can be attained

Lower bound: Deza et al ['06], Barany, Matousek ['07], ...
Sarrabezolles ['15]
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Topological approach

d ~ d—1

cdepth € = (~1)7 (2 (~1)B,(A) + 1 = 3= (~1)'6(A)) — f(B)

i=0 =0

d d—1 .
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Topological approach

N—

cdepthC = ] <\C|— ~ Ba(B)+1
i=0

L cdepthC < [T (161 - 1) +1
i=0
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Ba-1(B; Z) = 1.
Proof idea:

First show for a special configuration of points

Use flips preserving By 1(B; Z,)

«O>r «Fr «=>»
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Lemma
Bdfl(B; Zz) = 1.

Proof idea:

@ First show for a special configuration of points:

® Use flips preserving gd_l(B; Z3)

Main lemma
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e Setting: Fi,...Fy_1 normal (d — 1)-fans in general position
with leafs L7 L5 LEi

. . Fa_
common refinement = collection of rays Lgl N...N L,.d“’_l1

e Question: Max number of rays in the common refinement?

e Conjecture (Burton’03): 1 4 241
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e Pi,...,Pc C RY be polytopes (not necessarily full dim)

e Minkowski sum
Pi+Po+...+Pc={pr+po+...+pc|pi€P} CR?
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Further connections — normal surface theory

e Setting: Fi,...Fy_1 normal (d — 1)-fans in general position
with leafs L17, L}/, LY

, . Fa_
common refinement = collection of rays Lgl n...nLmt

e Reformulation: number of rays = number of facets of
Minkowski sum which correspond to a Minkow. sum of facets



Further connections — normal surface theory

e facets we are interested in

= hitting simplices of the associated colorful Gale transform

o = Deza's bound 1 + [[9=}(|Cj| — 1) becomes 1 + 291

= Burton’s conjecture is true!!
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Proof of Main Lemma: Initial configuration

Lemma : Ed_l(B,Zz) =1
e Let S 50 be a simplex with vertices vg, vy, ..., vy.
L (p(C,‘) = {V,’, —Vj, —2V,‘7 —3V,‘ NN —(‘C," - l)V,'}.

e B deformation retracts onto the (d — 1)-dimensional sphere,
hence B4_1(B) = 1.
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Definition
A flip is called
@ safe, if the line segment xx’ does not cross any flipping
hyperplane
® mild, if the line segment xx’ does cross a flipping hyperplane
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Proof of Main Lemma: Types of flips

Definition
A flip is called
@ safe, if the line segment xx’ does not cross any flipping
hyperplane
® mild, if the line segment xx’ does cross a flipping hyperplane
aff{0, xg, x1,...,Xg_2} and 0 ¢ conv{x,x’, x0,X1,...,X4_2}

©® wild, otherwise

x/ ) o) ' x’ Zo

K3
% e,
°
s
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Proof of Main Lemma: Safe and mild flips

@ a safe flip preserves B

® a mild flip preserves B
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Proof of Main Lemma: Wild flips

Wild flips do change B. B’ = simpl. complex after the flip
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Proof of Main Lemma: Wild flips

Wild flips do change B. B’ = simpl. complex after the flip

o a d-simplex present in B’ and not in B
O1,...,0; all d-simplices that are in B and not in B’
Tly. -y Ts all d-simplices present in both B and B’

Since Bd_l(B) =1, every (d — 1)-cycle z in B can be expressed as
z= Z@U; + 287'1',
il jeJd
where | C{0,1,...,r} and J C {1,...,s}.

O7; and dog boundaries in B’ = do1,...,00, generate ﬁd_l(B’).
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= all (d — 1)-cycles in C are zero homologous



Proof of Main Lemma

Clearly 9oy is not zero homologous, therefore Ed,l(B’) > 1.

Lemma: For every k > 0, the cycle 9oy + Jo is contained in a
subcomplex C with 84_1(C) = 0.
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= all (d — 1)-cycles in C are zero homologous N
= 0o and Oy are homologous in B’ for all k and 34_1(B') =1
as claimed. 0



Thank you for your attention!



	Definitions
	History and main result
	Topological reformulation
	Further connections – normal surface theory and Minkowski sums
	Proof idea (if time permits)

